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Scope IJS

General stability theory

• General stability of RBF-FD methods

• Global cardinal functions and stability

Stabilisation methods

• Hyperviscosity stabilisation

• Computational complexity of the hyperviscosity operator

• Hybrid schemes for computing the operator
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Collocation RBF-FD IJS

• Discretisation in Y = {yi}Ni=1

evaluation/computational nodes

• Approximation uh of the differential
operator L applied to u

(Luh)(x) =
N∑
i=1

LΨi(x)uh(yi) (1)

• Local interpolation with PHS rk and
monomials of order m for x ∈ Vy

(Luh)(x) =
n∑

i=1

Lψ(y)
i (x)uh(yi) (2)

Vy

Fig. 1: Domain discretisation
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Stability and integration errors IJS

• Global cardinal functions are piecewise functions - ρ(x) returns the closest y ∈ Y

Ψi(x) =

ψ
ρ(x)
j (x), xi ∈ Yρ(x)

0, xi ̸∈ Yρ(x)
(3)

• We require the solution uh ∈ Ṽh in the pointwise sense, but can think of uh continuously
on the piecewise function space Vh(Ω) spanned by Ψi.

• Integration error - cause spurious growth under insufficient oversampling

• Smoothing error
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General stability IJS

• Global cardinal functions are discontinuous

⇐⇒ RBF-FD trial space Vh is a discontinuous
piecewise space (solely piecewise
continuous i.e. Ψi ∈ Hk+1(Vy))

=⇒ RBF-FD differentiation matrices may have
spurious eigenvalues

Fig. 2: Global cardinal function
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General stability - stencil size IJS
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Fig. 3: Eigenspectra and global cardinal function Ψ∗ of Laplace operator ∆ 6



General stability - PHS order k and monomial order m IJS

Fig. 4: Cardinal functions as a function of order k and m

0.4 0.6 0.8
y

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ψ
(x
,y

)

k= 3

0.4 0.6 0.8
y

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
k= 5

0.4 0.6 0.8
y

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
k= 7

0.4 0.6 0.8
y

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
k= 9

0.4 0.6 0.8
y

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
k= 13

m= 1 m= 2 m= 4 m= 6

7



Problem? IJS

Test case: Linear advection

∂c

∂t
+ u · ∇c = 0 on T2([0, 1])

c(x, 0) = e−
||x−c||2

2R2

• Initially c(x, 0) ∈ C∞(Ω), however, for
every t > 0 we only have
ch(x, t) ∈ Vh(Ω) ⊂ L2(Ω), due to the
projection onto Vh(Ω).

• Errors are multiplying under time
stepping, particularly on the boundary of
Voronoi regions, effectively also in the
pointwise space.
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Fig. 5: Error as a function of time t
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Problem? IJS

• As our n→ N the jumps in cardinal functions are
becoming smaller. Moreover, we have
V

(n)
h ⊂ Hk+1(Ω) when n = N .

Fig. 6: Eigenspectrum as a function of stencil size n
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n
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Stabilisation methods IJS
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Fig. 8: Time for solving 105 iterations as a
function of stencil size n

• Undesirable: Larger stencil sizes

• Standard stabilisation: Hyperviscosity
stabilisation scheme

• For hyperbolic equations: Specialized
jump penalty scheme
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Hyperviscosity stabilisation IJS

Example: Linear advection

∂c

∂t
+ u · ∇c = γ∆αc γ = (−1)α+12−2αh2α

• To smoothen the discontinuities caused by uneven local interpolation a high-order
laplacian operator γ∆α is added to the scheme

• The operator targets higher-order Fourier modes

• For first-order accuracy one requires m = 2α

• Problem: Approximation of high-order derivatives requires large stencil sizes!
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Hyperviscosity stabilisation IJS

Fig. 9: Comparison of the scalar field c under stablisation and no stabilisation.
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Hyperviscosity stabilisation: Monomials IJS

Different approximation schemes

∂c

∂t
+ u · ∇c = γ∆̃αc

• Do we really need to have a first-order accurate
operator?

• The constant γ is O(h2α)

• We do not require a high precision of the
operator, rather, that it targets high-order Fourier
modes and the rest is controlled with γ

• To lower the stencil size, we can undersample the
monomial term for approximating ∆̃α

• Cons: unintended lower-order Fourier mode
damping
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Fig. 10: Error as of hyperviscosity stencil size nhyp
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Results: Monomial order IJS
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Fig. 11: Error as a function of stencil size n at
nhyp = 35

• Interesting: We can violate the local
interpolation system unisolvency criteria
m = ⌊k2⌋ − 1 and stencil size
recommendation.

• Under different severely undersampled
monomials the error for approximating the
operator is larger

• Different γ is required depending on the
selection of the monomial term
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Results: Monomial order convergence IJS
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Fig. 12: Error as a function of h with
m = 2, nhyp = 35.
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Fig. 13: Error as a function of h with
mhyp = 2, nhyp = 35
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Results: WLS IJS

• Can we use other RBF based methods
to compute the operator with a
smaller stencil size?

• Consider a local WLS approximation

uh(x) =

m∑
i=1

φ
(y)
i (x)uh(yi) (4)

where m < n and φi are Gaussian RBFs.

• The approach didn’t work, since the shape
parameter was difficult to select. The
resulting approximation also caused
low-order damping.
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Summary & discussion IJS

Presented:

• General stability depends on the stencil size

• Stabilisation via hyperviscosity also requires large stencil size

• The monomial augmentation of the RBF-FD scheme for hyperviscosity can be
undersampled

Future work & discussion

• The constant γ is hard to select and depends on the approximation order

• The order of the hyperviscosity prodigiously affects the overall error, which is not expected
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Hyperviscosity in practice IJS

• When approximating the higher-order
operator, there are huge round-off errors,
since our weights w are O(h2α)
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