Properties and benefits of using a hybrid RBF approximation for hyperviscosity stabilisation

Authors: Žiga Vaupotič¹, Miha Rot^{1,2}, Gregor Kosec¹

¹ Parallel and Distributed Systems Laboratory, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana 1000, Slovenija
² Jožef Stefan International Postgraduate School, Ljubljana, Slovenija

12. 9. 2024

General stability theory

- General stability of RBF-FD methods
- Global cardinal functions and stability

Stabilisation methods

- Hyperviscosity stabilisation
- Computational complexity of the hyperviscosity operator
- Hybrid schemes for computing the operator

Collocation RBF-FD

IJS 🕻

- Discretisation in $Y = \{y_i\}_{i=1}^N$ evaluation/computational nodes
- Approximation u_h of the differential operator $\mathcal L$ applied to u

$$(\mathcal{L}u_h)(x) = \sum_{i=1}^N \mathcal{L}\Psi_i(x)u_h(y_i) \qquad (1)$$

• Local interpolation with PHS r^k and monomials of order m for $x \in \mathcal{V}_y$

$$(\mathcal{L}u_h)(x) = \sum_{i=1}^n \mathcal{L}\psi_i^{(y)}(x)u_h(y_i)$$
 (2)

Fig. 1: Domain discretisation

IJS

- Global cardinal functions are piecewise functions - $\rho(x)$ returns the closest $y \in Y$

$$\Psi_{i}(x) = \begin{cases} \psi_{j}^{\rho(x)}(x), & x_{i} \in Y_{\rho(x)} \\ 0, & x_{i} \notin Y_{\rho(x)} \end{cases}$$
(3)

- We require the solution u_h ∈ V
 _h in the pointwise sense, but can think of u_h continuously on the piecewise function space V_h(Ω) spanned by Ψ_i.
- Integration error cause spurious growth under insufficient oversampling
- Smoothing error

- Global cardinal functions are discontinuous
- $\iff \mathsf{RBF}\text{-}\mathsf{FD} \text{ trial space } V_h \text{ is a discontinuous}$ piecewise space (solely piecewise continuous i.e. $\Psi_i \in H^{k+1}(\mathcal{V}_y)$)
 - ⇒ RBF-FD differentiation matrices may have spurious eigenvalues

Fig. 2: Global cardinal function

General stability - stencil size

Fig. 3: Eigenspectra and global cardinal function Ψ^* of Laplace operator Δ

General stability - PHS order k and monomial order m

Fig. 4: Cardinal functions as a function of order \boldsymbol{k} and \boldsymbol{m}

7

Problem?

Test case: Linear advection

$$\frac{\partial c}{\partial t} + u \cdot \nabla c = 0 \text{ on } \mathbb{T}^2([0,1])$$
$$c(x,0) = e^{-\frac{||x-c||^2}{2R^2}}$$

- Initially $c(x,0) \in C^{\infty}(\Omega)$, however, for every t > 0 we only have $c_h(x,t) \in V_h(\Omega) \subset L^2(\Omega)$, due to the projection onto $V_h(\Omega)$.
- Errors are multiplying under time stepping, particularly on the boundary of Voronoi regions, effectively also in the pointwise space.

Fig. 5: Error as a function of time t

Problem?

 As our n → N the jumps in cardinal functions are becoming smaller. Moreover, we have V_b⁽ⁿ⁾ ⊂ H^{k+1}(Ω) when n = N.

Fig. 6: Eigenspectrum as a function of stencil size n

Fig. 7: Error as a function of stencil size

Fig. 8: Time for solving 10^5 iterations as a function of stencil size n

- Undesirable: Larger stencil sizes
- Standard stabilisation: Hyperviscosity stabilisation scheme
- For hyperbolic equations: Specialized jump penalty scheme

Example: Linear advection

$$\frac{\partial c}{\partial t} + u \cdot \nabla c = \gamma \Delta^{\alpha} c \qquad \gamma = (-1)^{\alpha + 1} 2^{-2\alpha} h^{2\alpha}$$

- To smoothen the discontinuities caused by uneven local interpolation a high-order laplacian operator $\gamma\Delta^\alpha$ is added to the scheme
- The operator targets higher-order Fourier modes
- For first-order accuracy one requires $m = 2\alpha$
- Problem: Approximation of high-order derivatives requires large stencil sizes!

Hyperviscosity stabilisation

Fig. 9: Comparison of the scalar field c under stablisation and no stabilisation.

Different approximation schemes

$$\frac{\partial c}{\partial t} + u \cdot \nabla c = \gamma \tilde{\Delta}^{\alpha} c$$

- Do we really need to have a first-order accurate operator?
- The constant γ is $\mathcal{O}(h^{2\alpha})$
- We do not require a high precision of the operator, rather, that it targets high-order Fourier modes and the rest is controlled with γ
- To lower the stencil size, we can undersample the monomial term for approximating $\tilde{\Delta}^{\alpha}$
- **Cons:** unintended lower-order Fourier mode damping

Fig. 11: Error as a function of stencil size n at $n_{hyp} = 35 \label{eq:nhyp}$

- Interesting: We can violate the local interpolation system unisolvency criteria m = L^k/₂ − 1 and stencil size recommendation.
- Under different severely undersampled monomials the error for approximating the operator is larger
- Different γ is required depending on the selection of the monomial term

Results: Monomial order convergence

 $\alpha = 3$

*

0

10-2

h

m = 0

m = 1

m = 2

m = 4

 10^{-3}

Fig. 12: Error as a function of *h* with $m = 2, n_{hyp} = 35.$

Fig. 13: Error as a function of *h* with $m_{hup} = 2, n_{hup} = 35$

- Can we use other RBF based methods to compute the operator with a smaller stencil size?
- Consider a local WLS approximation

$$u_h(x) = \sum_{i=1}^m \varphi_i^{(y)}(x) u_h(y_i)$$
 (4)

where m < n and φ_i are Gaussian RBFs.

• The approach didn't work, since the shape parameter was difficult to select. The resulting approximation also caused low-order damping.

Presented:

- General stability depends on the stencil size
- Stabilisation via hyperviscosity also requires large stencil size
- The monomial augmentation of the RBF-FD scheme for hyperviscosity can be undersampled

Future work & discussion

- The constant $\boldsymbol{\gamma}$ is hard to select and depends on the approximation order
- The order of the hyperviscosity prodigiously affects the overall error, which is not expected

Thank you for your attention!

Acknowledgments: P2-0095, PR-10468, num. J2-3048 and num. N2-0275

IJS 🕻

• When approximating the higher-order operator, there are huge round-off errors, since our weights w are $\mathcal{O}(h^{2\alpha})$

