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Scope

@ RBF-FD and its extension to the oversampled approach

@ Oversampled method as a Galerkin method

@ Well-posedness and error estimates of the integral Galerkin method
@ Quasi-Monte Carlo quadrature and its analysis

@ Error estimates for quadrature scheme
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Model problem

Let Q C R? be a bounded convex domain with a Lipschitz boundary
08). We seek u : 2 — R that satisfies (variationally)

—Au =f inQ
B (1)
U =0 on 09

Assume that f € L?(92), Calderon-Zygmund theory states that
u €V = H?*(Q)N H(Q) with

[Aullz20) < Clfllz2() (2)

For numerical test, we consider 2 = [0, 1]?

f = —2x?sin(rx) sin(my) (3)
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Motivation

Let X = {z;}}¥, C Q be a quasi-uniform nodeset with internodal
distance of h. In the collocation method, we seek uy, such that

Ahuh(:vi) = f(:m) Vi = 1, ...N (4)
This results in
Dpup(X) = f(X) (5)

How to prove that Dy, is invertible? Is the problem well-posed? What
can we state about the error?

For this, we consider the generalisation to the oversampled approach.
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Oversampled RBF-FD approach

We introduce another low-discrepancy nodeset Y = {y;}, where

M > N. We define M = ¢gN, assume that ¢ € N. Let %, = { i} | be
a set of shape-regular Voronoi regions generated by X.

Discretisation X C €

Sampling Y and K,
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Oversampled RBF-FD approach

For each z; € X we generate the local interpolant (PHS + mon)

unl = Y Yrun(wr) (6)
h=1

Since DOFs are shared across interpolation systems we can construct
global Lagrange functions and obtain

N
up, = Z Wup (x;) (7)
=1

We require that it holds

N
Aup(y) = un(2:)AWi(y) = f(y) VyeY (8)
i=1
Which results in

Dy (Y, X)un(X) = f(Y) 9)
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Oversampled RBF-FD approach

To solve this oversampled system, we project it onto the column space
of the evaluation matrix Ep(Y, X)

EL(Y, X)Dp(Y, X)up(X) = B (Y, X) f(Y), (10)

where evaluation matrix maps up(X) — up(Y'). That is, the following
diagram commutes

v — I Ly

RN En RM

This is equivalent to requiring that

D (Y, X)up(X) — (V) Lspan{E\" ..., EN)y (11)

Notice that column are just E,(f) = [Ui(y1) ... Yi(yam)]
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RBF-FD Trial space

The space V}, = span{V;} is an RBF-FD trial space, moreover for k > 2

Vi, C H*(#) = {u € LA(Q) : u|y € H* ()} (12)
We define the inner product over Y

M
(un, vp) |MZ (yi)vn(yi)

Quadrature induced variational problem
Find up € V}, such that
(Auh,vh) = (f, ’Uh) Yo, € Vp, (13)
Which is an approximation of
/ Apup, vp dr = / fopdx You, €V (14)
Q Q
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Broken Sobolev space

We define a set of edges &, between Voronoi regions. For each e € &,
we have

+ —
+ _ u +u

[l =t —u fupo = (15)

These values are well defined since for each Voronoi region there exists
a trace operator v; : H* (%) — L*(0.%;).

Furthermore, the O-trace space is V}) := {u € V}, : 7;(u) = 0 for all
boundary % }. We let V;, = V0 for clarity.
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Integral Galerkin

Discrete variational problem
Find uj, € V}, such that

ap(up,vp) = /Ahuhvhdx—/fvhdx— L(vy) Yoy

Note that V}, ¢ H}(€2), we are commiting a variational crime.

Proposition (Consistency)

Let ap, : (V 4+ Vp) x Vi, = R, then u € V satisfies

ap(u,vp) = L(vy) Vo

This implies Galerkin orthogonality ap(up — w,vp) =0 for all vy,.

Proof.
By density argument since v € C°(2) and vy, € L*(9).
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Integral Galerkin

We define the following norm and seminorm on V},

1
lunlly, = IVaunlliz) + [unly  lunli = h:l![[ﬂh]]!@(e) (18)
eESLy,
Notice that the interpolant bound quickly follows

HIhu — u||%/h S Ch2p+2|u|Wp+1,oo(Q) + C/h2p+2|u‘Wp+l,oo(Q) (19)
By using integration by parts and the standard identity

[IViupon] = {VaunBlon] + [Veun]{vn}} we may rewrite the bilinear
form as

ah(uh, ’Uh) = /thuhvhvh dr — Z Ne - {{thh}} [[Uh]] dx

ecé&, V€
3 [ ne- [Vaunlfon} de.
ec&, ’ €
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Integral Galerkin

Proposition (Boundedness)

It holds that |ap(un,vn)| < |lunllv;, llvnllv, -
Theorem (Coerecivity)

It holds that ap(up,up) > aHuhH%,h.
Proof.

Trace inequality + Young + interpolation weak continuity. L]

Proposition (Error estimate)
For the solution up, € V}, it holds that
lun — ullv, < Cllu ~ Tully, < CH (20)

How can we find the L? estimate? Adjoint problem!
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Integral Galerkin

Problem: method is not adjoint consistent! For ¢ € V that

satisfies
—AyYp=g inQ Pp=0 on o
we want

/—Avm/)dx:/gvhdx Yo, € Vi, +V
Q Q

via integration by parts, we can show that

/ vah_/w (—Apvp) dx + Z/[[uhw n] da

ecéy,
— g /[[wVvh-nﬂ dx
ecdy, €
This might reduce our convergence rate.
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Integral Galerkin
We now solve
—AYp=up—u inQ =0 ondQ (25)
Defining e, = up — u we have that for vy, = ey,
HehHig(Q) = ap (v, ep) + Inconsistency terms (26)

Using standard estimates in the sense that ap (v, epn) = an(v — Zpt, ep)
by galerkin orthogonality and by using boundedness we obtain

HehHQLQ(Q) = epep dx < || — Ip||v;, |len v, + Inconsistency terms (27)

notice that [|¢) — Zp9|| < hl|Av| 12(q). By trace, elliptic and inverse
inequalities, we get a final bound

lenlZay < hllenllv, + A llenlly, < CRPFL 4+ Pt (28)
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Error convergence
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Quadarature

We define the quadrature operator @ : V;, — R given by

9 §-
Q=45 > i) (un,vn) = Qlunvy (29)
=1

Recall that we have the quadrature-induced variational problem
af (un,vn) = (Apup,vn) = (f,vn) = Li(vp) Yo € Vy (30)

We have to show that the quadrature problem is coercive in V} norm.
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Integration error

We estimate the error for u € W (%/h) via Koksma-Hlawka inequality

miz

for QMC. That is, for f € BHKV(]0,1]?) and low discrepancy nodes Z

N

NS faw) - [ fds

i=1 [0,1]¢

<V(f)D(2) (31)

Consider a uniformity (and measure) preserving map ¢ : Q — [0, 1]?
the sense

/ f@yde =19 [ Fle(w)) dy = T[] (32)
Q 012

Since u € W' (U#,) we know that the Hardy-Kraus variation is

miT

bounded, i.e. V(u) < [[0zullr1(q) + [|0zul|L2(0) + |0z yull 1) < oo. Is
V(uo ) bounded? Not necessarily. We assume that for u o %

Viuoy) < CV(u) (33)
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Preliminary results - Integration error

What about u;, € V3,7 Since uj, € H%(#},), by the Sobolev embedding

theorem (in the piecewise sense), H?(#},) — W2L(#,) — W;ulw(%/h)
Hence

Viun) < llunllyis gy < Cllunllweicg,) < C'h 2 lupll ) (34)

it follows

Qlun] — ITun]| < 1QICh™*D(Y)|unll 1 (1) (35)
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Quadrature coerecivity / well-posedness

Following the derived inequality and applying Holder’s inequality

an(up,up) — af (up, up) < Ch>D(Y) || Apunll 2 llunllzz)  (36)
< C'h™2D(Y)|unlF1 ;) (37)

we used inverse inequality in the last step. It follows

(an(un, un) — af (un,un)) < Ch>D(Y)||un 3, (38)

Hence
ap (un, un) = an(un, un) — (an(un, un) — af (up, up)) (39)
> |lunlly, (@ — h2CD(Y)) (40)

Since D(Y') ~ hlzj = ¢ 'h?, for sufficiently large ¢ it follows that
(a — Ch™2D(Y)) > 0.
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Quadrature error estimate

We bound the overall error by Strang’s second lemma

i Jafy (vn, wn) = Lf (vn, wn)|
Hu_uhHVh < Clnf“u—vhHVh + sup h ) h ,
" wp €V \{0} |wn ||v;,

Recall that

|af (vn, wp) — L (vp, wp)|

sup =0 (41)
wp VR \{0} [wnlvs,
The obtained error in the energy norm
lw = unllv;, < CRP (42)
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Numerical results
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Thank you for your attention! Any questions?
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