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Scope

1 RBF-FD and its extension to the oversampled approach

2 Oversampled method as a Galerkin method

3 Well-posedness and error estimates of the integral Galerkin method

4 Quasi-Monte Carlo quadrature and its analysis

5 Error estimates for quadrature scheme
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Model problem

Let Ω ⊂ R2 be a bounded convex domain with a Lipschitz boundary
∂Ω. We seek u : Ω → R that satisfies (variationally){

−∆u = f in Ω

u = 0 on ∂Ω
(1)

Assume that f ∈ L2(Ω), Calderon-Zygmund theory states that
u ∈ V = H2(Ω) ∩H1

0 (Ω) with

∥∆u∥L2(Ω) ≤ C∥f∥L2(Ω) (2)

For numerical test, we consider Ω = [0, 1]2

f = −2π2 sin(πx) sin(πy) (3)
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Motivation

Let X = {xi}Ni=1 ⊂ Ω be a quasi-uniform nodeset with internodal
distance of h. In the collocation method, we seek uh such that

∆huh(xi) = f(xi) ∀i = 1, . . . N (4)

This results in

Dhuh(X) = f(X) (5)

How to prove that Dh is invertible? Is the problem well-posed? What
can we state about the error?
For this, we consider the generalisation to the oversampled approach.
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Oversampled RBF-FD approach

We introduce another low-discrepancy nodeset Y = {yi}Mi=1 where
M > N . We define M = qN , assume that q ∈ N. Let Kh = {Ki}Ni=1 be
a set of shape-regular Voronoi regions generated by X.
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Oversampled RBF-FD approach

For each xi ∈ X we generate the local interpolant (PHS + mon)

uh|Ki
=

n∑
k=1

ψkuh(xk) (6)

Since DOFs are shared across interpolation systems we can construct
global Lagrange functions and obtain

uh =

N∑
i=1

Ψiuh(xi) (7)

We require that it holds

∆uh(y) =

N∑
i=1

uh(xi)∆Ψi(y) = f(y) ∀y ∈ Y (8)

Which results in

Dh(Y,X)uh(X) = f(Y ) (9)
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Oversampled RBF-FD approach

To solve this oversampled system, we project it onto the column space
of the evaluation matrix Eh(Y,X)

ET
h (Y,X)Dh(Y,X)uh(X) = ET

h (Y,X)f(Y ), (10)

where evaluation matrix maps uh(X) 7→ uh(Y ). That is, the following
diagram commutes

V Vh

RN RM

Ih

πX πY

Eh

This is equivalent to requiring that

Dh(Y,X)uh(X)− f(Y ) ⊥ span{E(1)
h , . . . , E

(N)
h } (11)

Notice that column are just E
(i)
h = [Ψi(y1) . . .Ψi(yM )]
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RBF-FD Trial space

The space Vh = span{Ψi} is an RBF-FD trial space, moreover for k ≥ 2

Vh ⊂ Hk(Kh) = {u ∈ L2(Ω) : u|Ki
∈ Hk(Ki)} (12)

We define the inner product over Y

(uh, vh) =
|Ω|
M

M∑
i=1

uh(yi)vh(yi)

Quadrature induced variational problem

Find uh ∈ Vh such that

(∆uh, vh) = (f, vh) ∀vh ∈ Vh (13)

Which is an approximation of∫
Ω
∆huh vh dx =

∫
Ω
fvh dx ∀vh ∈ Vh (14)
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Broken Sobolev space

We define a set of edges Eh between Voronoi regions. For each e ∈ Eh

we have

JuKe = u+ − u− {{u}}e =
u+ + u−

2
(15)

These values are well defined since for each Voronoi region there exists
a trace operator γi : H

k(Ki) → L2(∂Ki).
Furthermore, the 0-trace space is V 0

h := {u ∈ Vh : γi(u) = 0 for all
boundary Ki}. We let Vh = V 0

h for clarity.
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Integral Galerkin

Discrete variational problem

Find uh ∈ Vh such that

ah(uh, vh) = −
∫
Ω
∆huhvh dx =

∫
Ω
fvh dx = L(vh) ∀vh (16)

Note that Vh ̸⊂ H1
0 (Ω), we are commiting a variational crime.

Proposition (Consistency)

Let ah : (V + Vh)× Vh → R, then u ∈ V satisfies

ah(u, vh) = L(vh) ∀vh (17)

This implies Galerkin orthogonality ah(uh − u, vh) = 0 for all vh.

Proof.

By density argument since v ∈ C∞
c (Ω) and vh ∈ L2(Ω).
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Integral Galerkin

We define the following norm and seminorm on Vh

∥uh∥2Vh
= ∥∇huh∥2L2(Ω) + |uh|2J |uh|2J =

∑
e∈Eh

1

he
∥JuhK∥2L2(e) (18)

Notice that the interpolant bound quickly follows

∥Ihu− u∥2Vh
≤ Ch2p+2|u|W p+1,∞(Ω) + C ′h2p+2|u|W p+1,∞(Ω) (19)

By using integration by parts and the standard identity
J∇huhvhK = {{∇huh}}JvhK + J∇huhK{{vh}} we may rewrite the bilinear
form as

ah(uh, vh) =

∫
Ω
∇huh∇hvh dx−

∑
e∈Eh

∫
e
ne · {{∇huh}}JvhK dx

−
∑
e∈Eh

∫
e
ne · J∇huhK{{vh}} dx.
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Integral Galerkin

Proposition (Boundedness)

It holds that |ah(uh, vh)| ≤ ∥uh∥Vh
∥vh∥Vh

.

Theorem (Coerecivity)

It holds that ah(uh, uh) ≥ α∥uh∥2Vh
.

Proof.

Trace inequality + Young + interpolation weak continuity.

Proposition (Error estimate)

For the solution uh ∈ Vh it holds that

∥uh − u∥Vh
≤ C∥u− Ihu∥Vh

≤ Chp (20)

How can we find the L2 estimate? Adjoint problem!
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Integral Galerkin

Problem: method is not adjoint consistent! For ψ ∈ V that
satisfies

−∆ψ = g in Ω ψ = 0 on ∂Ω (21)

we want ∫
Ω
−∆vhψ dx =

∫
Ω
gvh dx ∀vh ∈ Vh + V (22)

via integration by parts, we can show that∫
Ω
−∆ψvh =

∫
Ω
ψ(−∆hvh) dx+

∑
e∈Eh

∫
e
Jvh∇ψ · nK dx (23)

−
∑
e∈Eh

∫
e
Jψ∇vh · nK dx (24)

This might reduce our convergence rate.
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Integral Galerkin

We now solve

−∆ψ = uh − u in Ω ψ = 0 on ∂Ω (25)

Defining eh = uh − u we have that for vh = eh

∥eh∥2L2(Ω) = ah(ψ, eh) + Inconsistency terms (26)

Using standard estimates in the sense that ah(ψ, eh) = ah(ψ − Ihψ, eh)
by galerkin orthogonality and by using boundedness we obtain

∥eh∥2L2(Ω) = eheh dx ≤ ∥ψ − Ihψ∥Vh
∥eh∥Vh

+ Inconsistency terms (27)

notice that ∥ψ − Ihψ∥ ≤ h∥∆ψ∥L2(Ω). By trace, elliptic and inverse
inequalities, we get a final bound

∥eh∥2L2(Ω) ≤ h∥eh∥Vh
+ h−1∥eh∥Vh

≤ Chp+1 + C ′hp−1 (28)
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Error convergence
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Quadarature

We define the quadrature operator Q : Vh → R given by

Q[f ] =
|Ω|
M

M∑
i=1

f(yi) (uh, vh) = Q[uhvh] (29)

Recall that we have the quadrature-induced variational problem

aqh(uh, vh) = (∆huh, vh) = (f, vh) = Lq
h(vh) ∀vh ∈ Vh (30)

We have to show that the quadrature problem is coercive in Vh norm.
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Integration error

We estimate the error for u ∈W 1,1
mix(Kh) via Koksma-Hlawka inequality

for QMC. That is, for f ∈ BHKV ([0, 1]d) and low discrepancy nodes Z∣∣∣∣∣N−1
N∑
i=1

f(xi)−
∫
[0,1]d

f dx

∣∣∣∣∣ ≤ V (f)D(Z) (31)

Consider a uniformity (and measure) preserving map φ : Ω → [0, 1]2 in
the sense ∫

Ω
f(x) dx = |Ω|

∫
[0,1]2

f(φ(y)) dy = I[uh] (32)

Since u ∈W 1,1
mix(Kh) we know that the Hardy-Kraus variation is

bounded, i.e. V (u) ≤ ∥∂xu∥L1(Ω) + ∥∂xu∥L2(Ω) + ∥∂x,yu∥L1(Ω) <∞. Is
V (u ◦ φ) bounded? Not necessarily. We assume that for u ◦ φ

V (u ◦ φ) ≤ CV (u) (33)
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Preliminary results - Integration error

What about uh ∈ Vh? Since uh ∈ H2(Kh), by the Sobolev embedding
theorem (in the piecewise sense), H2(Kh) ↪→W 2,1(Kh) ↪→W 1,1

mix(Kh).
Hence

V (uh) ≤ ∥uh∥W 1,1
mix(Kh)

≤ C∥uh∥W 2,1(Kh) ≤ C ′h−2∥uh∥L1(Ω) (34)

it follows

|Q[uh]− I[uh]| ≤ |Ω|Ch−2D(Y )∥uh∥L1(Kh) (35)
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Quadrature coerecivity / well-posedness

Following the derived inequality and applying Holder’s inequality

ah(uh, uh)− aqh(uh, uh) ≤ Ch−2D(Y )∥∆huh∥L2(Ω)∥uh∥L2(Ω) (36)

≤ C ′h−2D(Y )|uh|2H1(Kh)
(37)

we used inverse inequality in the last step. It follows

(ah(uh, uh)− aqh(uh, uh)) ≤ Ch−2D(Y )∥uh∥2Vh
(38)

Hence

aqh(uh, uh) = ah(uh, uh)− (ah(uh, uh)− aqh(uh, uh)) (39)

≥ ∥uh∥2Vh
(α− h−2CD(Y )) (40)

Since D(Y ) ∼ h2y = q−1h2, for sufficiently large q it follows that
(α− Ch−2D(Y )) > 0.
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Quadrature error estimate

We bound the overall error by Strang’s second lemma

∥u− uh∥Vh
≤ C inf

vh
∥u− vh∥Vh

+ sup
wh∈Vh\{0}

|aqh(vh, wh)− Lq
h(vh, wh)|

∥wh∥Vh

Recall that

sup
wh∈Vh\{0}

|aqh(vh, wh)− Lq
h(vh, wh)|

∥wh∥Vh

= 0 (41)

The obtained error in the energy norm

∥u− uh∥Vh
≤ Chp (42)
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Numerical results
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Thank you for your attention! Any questions?

Žiga Vaupotič (IJS) Oversampled RBF-FD Galerkin approach for solving elliptic problems 22 / 22


