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Abstract. The numerical stability of fluid flow is an important topic in computational fluid
dynamics as fluid flow simulations usually become numerically unstable in the turbulent regime.
Many mesh-based methods have already established numerical dissipation procedures that
dampen the effects of the unstable advection term. When it comes to meshless methods, the
prominent stabilisation scheme is hyperviscosity. It introduces numerical dissipation in the form
of a higher-order Laplacian operator. Many papers have already discussed the general effects of
hyperviscosity and its parameters. However, hyperviscosity in flow problems has not yet been
analyzed in depth. In this paper, we discuss the effects of hyperviscosity on natural convection
flow problems as we approach the turbulent regime.

1. Introduction
Hyperviscosity was first introduced to spectral methods in 1998 by Ma under the name
(super)spectral viscosity [1], however, the method itself has its roots in artificial viscosity, which
was introduced by Von Neumman [2]. Despite the promising analytical results shown by Ma, it
was never widely used and only appeared in a handful of research papers where it was applied to
the Navier-Stokes equation [3, 4]. The meshless community first adapted spectral viscosity, now
called hyperviscosity, in 2011 when Fornberg [5] showed that hyperviscosity was able to stabilise
time-stepping schemes by shifting the spurious eigenvalues into the stable region. Subsequently,
hyperviscosity was applied to a variety of fluid dynamic cases [6, 7, 8]. The parameters of
hyperviscosity were initially only briefly mentioned and included a large number of empirical
approximations. Hyperviscosity and its connection to the global stability of the Radial Basis
Function-generated Finite Difference (RBF-FD) method was only well established by the work
of Shankar [9, 10], who introduced the Von Neumann analysis and showed that hyperviscosity
unconditionally stabilises linear advection-diffusion equations for multistep processes under the
right parameters. Recently, hyperviscosity was also applied to nonlinear conservation laws and
showed promising results [11]. In this paper, we address hyperviscosity in the context of a
natural convection problem, i.e., a thermo-fluid problem, where we show that hyperviscosity
can stabilise the solution of the standard De Vahl Davis benchmark problem solved on scattered
nodes.



2. Numerical Method
In order to numerically approximate the solution of the PDE on a domain Ω with the strong
form RBF-FD [12] method the domain is first discretised with a set of xi ∈ Ω scattered nodes,
using a dedicated meshless node positioning algorithm [13]. In next step the linear operator L
applied to field u

(Lu)(xc) ≈
∑
i∈sc

wiu(xi), (1)

is approximated at the point xc using n closest nodes, often referred to as stencil sc. The
unknown RBF-FD weights w are computed by imposing equality in Eq. (1) and solving the
linear system for a set of radial basis functions. In our case that is a set of polyharmonic splines
(PHS) [14] that are centred at the stencil nodes, augmented with polynomials up to order m.
The PHS do not posses a shape parameter and are therefore seemingly without a free parameter.
However, this is not completely true, as the selection of PHS order k ∈ N affects the stability of
the system. In this work, we use the scaling k = ℓ+ 1 provided by Shankar [9], where ℓ stands
for the minimum unisolvency order i.e. the order of the highest derivative. The monomial order
is set to the minimum m = ℓ as it is directly related to stencil size n = 2

(
m+d
m

)
+1, where d = 2

is the dimensionality of the problem.

3. Hyperviscosity
To stabilise the higher frequency oscillations of the scheme we introduce the hyperviscosity term
into the governing PDE. It helps by dampening spurious modes, usually stemming from the
non-linear advection term, that would otherwise amplify with time. The general form of the
hyperviscosity term is

(−1)1−αγ∆αu (2)

where α is the order and γ ≪ 1 is the amplitude of applied hyperviscosity . The expression
from Eq. (2) is added to the right-hand side of the equation at hand. The constant γ has to be
selected carefully to provide enough stabilisation without ruining the solution [8, 5]. There is no
broad consensus in the literature with an abundance of proposed estimates and scalings for the
constant γ [6, 7, 5, 9]. We have decided to use a relatively simple scaling of γ = ch2α [8, 7], where
c is a user-defined constant. The paper by Flyer [7] suggests a bound of O(10−2) to O(101) for
the constant c, however, we have noticed that the bound is case dependant prompting us to use
higher values.

The order of hyperviscosity is also quite important, as higher orders of the operator tend to
dampen higher frequency oscillations while having a less detrimental impact on the low-frequency
behaviour i.e. the simulated physics [7]. Not to mention that the computational cost increases
drastically with increasing order. Based on the literature and the computational intensity of the
hyperviscosity operator we use the order of α = 3. The order α = 3 corresponds to ∇6 operator,
while the rest of the problem is governed by ∇2 and ∇ operators, i.e. the order of approximation
required for hyperviscosity is significantly higher in comparison to all other terms. To improve
computational performance and stability we therefore use separate approximation setups for the
hyperviscosity term ( k = 2α+ 1 and m = 2α) and for other terms (k = 3 and m = 2).



4. Governing problem
We are solving a coupled system of buoyancy-driven incompressible Navier-Stokes and heat
transfer equations,

∇ · u = 0 (3a)

∂u

∂t
+ (u · ∇)u = −∇p+ Pr∇2u− RaPr g∆Tr (3b)

∂T

∂t
+ (u · ∇)T = ∇2T, (3c)

where u stands for velocity and T for temperature , g is the gravitational acceleration, ∆Tr is the
temperature offset in Boussinesq approximation, Ra and Pr are nondimensional Rayleigh and
Prandt numbers characterising the problem [15]. The momentum equation is solved explicitly
based on the temperature field of the previous iteration. The pressure-velocity coupling is
implemented through the Chorin’s pressure projection method [16]), where the pressure Poisson
equation is solved implicitly, and the pressure correction is explicitly applied to the velocity
field. The timestep of ∆t = 10−6 will be used throughout the whole analysis.

The hyperviscosity stabilisation term

+ch6∇6u, (4)

is added to the right hand side of the momentum Eq. (3b) and/or the heat Eq. (3c).

5. Results
The results are based on the De Vahl Davis test case [15], where the natural convection is studied
in a rectangular enclosed domain Ω = [0, 1] × [0, 1] with no-slip velocity boundary conditions.
The temperature gradient is imposed by Dirichlet boundary conditions for the temperature with
TC = −0.5 on the left wall and TH = 0.5 on the right, while the horizontal walls are adiabatic.
The Prandtl number is kept at Pr = 0.71 (air) throughout the whole analysis and the results
are compared to 2 reference solutions [17, 18] via the average Nusselt number along the cold
wall ∂ΩL

Nu =
1

|∂ΩL|
∑

x∈∂ΩL

∂T (x)

∂n
, (5)

used as the primary comparison indicator. Additionally, to analyze the stability of the system
with the eigenvalue decomposition of the implicit (Euler) differentiation matrix Aun+1 = un is
used.

We first verify our solution with the standard convergence test for Ra = 106. The magnitude
constant c was hand-tuned to c = 100, which will also be used in all following cases. In Figure 1
we see that the addition of hyperviscosity to the momentum equation, the temperature equation,
or both equations, labelled as u, T, and uT -Hyperviscosity, has almost no detrimental effect on
the convergence. Our results are also in good agreement with the reference values indicated
by the horizontal lines. The rest of the analysis will use a ∆x = 0.006 (N ≈ 27 · 104) unless
otherwise specified.

Up to this point, the results have shown that introducing hyperviscosity has little to no
adverse effects on the accuracy of the numerical scheme, allowing us to continue the study of
the impact on the stability of the system. First, we show that hyperviscosity stabilises the
discrete dynamical system at Ra = 108. We find that in Figure 2 spectrum of the implicit
differentiation matrix of the system, to which the hyperviscosity was applied, at t = 3 · 10−4

has eigenvalues whose absolute values are less than one meaning that the linearized system is
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Figure 1. Convergence of the average Nusselt number on the left wall with an increasing
number of computational nodes for Ra = 106. The line labelled as *-Hyperviscosity represents
the results with additional hyperviscosity stabilisation for the specific equation.
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Figure 2. Eigenvalue spectra of the inverse of implicit differentiation matrix A−1 at t = 3 ·10−4

for Ra = 108 with spatial discretisation density of ∆x = 0.009 (N ≈ 1.2 · 104). The black line
shows a unit circle.

stable [19], unlike the system without hyperviscosity. While the spectrum does not necessarily
imply that the system is unconditionally stable, as the matrix A depends on the linearized
advection term, it does, however, show that the system with hyperviscosity is stable for longer
than the system without hyperviscosity. We also show that hyperviscosity must be applied to
either the momentum equation or both the momentum and the heat transfer equations, as the
stabilisation of the heat transfer equation alone doesn’t shift all spurious eigenvalues to the
stable region.

Furthermore, in Figure 3 we show that a system with hyperviscosity is far more stable for
higher Ra numbers. We have also noticed that when the system approaches instability (as
Ra → 108), the stabilisation of both the momentum and the heat transfer equations is required.
Interestingly, the stabilisation of the temperature field alone did not extend the stability to a
higher Ra number.

We have also tested a case where Ra > 108, but unfortunately no stable constant c that could
cover the entire considered range of cases was found. For optimal stabilisation effect, different
values of the constant c would be required for different Ra and for different times in the solution
procedure.

As a final remark, an example of the resulting velocity and temperature fields is shown in
the left subplot of Figure 4 and the corresponding stabilisation fields produced by applying
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Figure 3. The average left wall Nusselt number in the steady state for a range of
Rayleigh numbers. The line labelled as *-Hyperviscosity represents the results with additional
hyperviscosity stabilisation for the specific equation.

the hyperviscosity operator to u and T in the central and right subplot. We can see that
hyperviscosity is most effective in the areas with large velocity gradients for both and additionally
close to the boundary for T -Hyperviscosity.

Figure 4. Velocity and temperature field of the stationary solution (left) at Ra = 107 and
t = 0.1. Magnitudes of the hyperviscosity operator applied to the velocity field(center) and the
temperature field(right).

6. Conclusions
In this paper, we have shown that hyperviscosity stabilisation can be used to improve the
stability for a natural convection-driven flow simulated with the meshless RBF-FD method
on scattered computational nodes. We used a convergence study to establish that the
introduction of hyperviscosity does not significantly change the solution once sufficiently
dense discretisation is used. Furthermore, we have shown how applying the stabilisation to
momentum and heat equations changes the system’s eigenspectrum and how these changes are
reflected in the achievable range of Rayleigh numbers with stable solutions. By applying the



hyperviscosity operator to both the momentum and the heat equation we were able to achieve
comparable stability and results to reference meshless methods operating on regularly distributed
computational nodes.

The main challenge encountered has proved to be the selection of hyperviscosity parameters,
most critically the constant γ and its scaling relations that ensure adequate stabilisation in the
wide considered range of flow regimes and discretisation densities. This is also the main hurdle
for further practical applications of hyperviscosity stabilisation where a method for adapting
γ to specific cases and even to changing flow conditions within a single case would be sorely
required.
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